Towards Verification of Neural Networks for Small
Unmanned Aircraft Collision Avoidance

Ahmed Irfan
Stanford University
Stanford, CA, USA

irfan@cs.stanford.edu

Kyle D. Julian
Stanford University
Stanford, CA, USA

kjulian3 @stanford.edu

Mykel J. Kochenderfer
Stanford University
Stanford, CA, USA
mykel @stanford.edu

Abstract—The ACAS X family of aircraft collision avoidance
systems uses large numeric lookup tables to make decisions.
Recent work used a deep neural network to approximate and
compress a collision avoidance table, and simulations showed that
the neural network performance was comparable to the original
table. Consequently, neural network representations are being
explored for use on small aircraft with limited storage capacity.
However, the black-box nature of deep neural networks raises
safety concerns because simulation results are not exhaustive.
This work takes steps towards addressing these concerns by
applying formal methods to analyze the behavior of collision
avoidance neural networks both in isolation and in a closed-loop
system. We evaluate our approach on a specific set of collision
avoidance networks and show that even though the networks are
not always locally robust, their closed-loop behavior ensures that
they will not reach an unsafe (collision) state.

Index Terms—Airborne Collision Avoidance, Deep Neural
Network, Formal Methods, Local Robustness, Reachability.

I. INTRODUCTION

The Federal Aviation Administration (FAA) is leading the
development of a family of collision avoidance systems for
unmanned aircraft, including ACAS Xu for large unmanned
aircraft and the derived variant for SUAS called ACAS sXu [1].
ACAS sXu, like other ACAS systems, uses numeric lookup
tables optimized offline for decision making. However, due to
the large size of the table and the limited memory availability
on sUAS, a compressed representation of the table is desired.
Recent work [2] showed that a deep neural network (DNN)
approximation of the table can reduce the needed memory by a
factor of 1000. The work also demonstrated through simulation
that the DNN representation does not increase computation
time or diminish operational performance. The tabular version
of ACAS sXu has been integrated and flight tested [3], and
there are plans to do the same with the DNN version.

DNNs are known for their opaqueness and susceptibility to
adversarial attacks [4], [5]. The black-box nature of DNNs
calls into question their trustworthiness and hinders their
application to safety-critical domains. In this work, we take
steps towards addressing safety concerns by applying formal
methods.

Baoluo Meng
GE Global Research
Niskayuna, NY, USA
baoluo.meng @ge.com

Haoze Wu
Stanford University
Stanford, CA, USA

haozewu @stanford.edu

Clark Barrett
Stanford University
Stanford, CA, USA

barrett@cs.stanford.edu

James Lopez
GE Global Research
Niskayuna, NY, USA

lopezj@ge.com

We train DNNs from a lookup table of an early prototype of
ACAS sXu (the official table may be obtained from the ASTM
or RTCA standards organizations). We explore the verification
of DNNss in a closed-loop system that captures the dynamics
of an aircraft and uses a DNN controller for advisories. We
also explore verifying the neural networks in isolation, by
analyzing the local robustness of the DNN with respect to
the original table. Local robustness requires that there be no
perturbation within a small range in the network’s inputs that
could cause a significant difference in the network’s output. To
do the analysis, we first cluster the input regions with the same
output label into hypercubes and create verification queries
for each cluster. Then, we check the queries using a neural
network verification tool called Marabou [6].

We also analyze the DNNs within a closed-loop system to
evaluate whether the network can reach an unsafe (collision)
state. To analyze the closed-loop system, we adapt a reacha-
bility method [7] that was originally proposed for analyzing
a vertical collision avoidance system. In that work, the neural
network outputs were bounded using the neural network ver-
ification tools Reluplex [8] and Reluval [9]. The reachability
method determines all possible ways aircraft encounters can
resolve under certain assumptions about the aircraft dynamics.
We apply the method for the horizontal component of the
ACAS sXu system. The reachability analysis shows that even
though the neural networks are not locally robust everywhere,
they are still safe in the sense that an aircraft following
advisories from the network will avoid collision.

The paper is organized as follows: We first describe the
table of a collision avoidance prototype and its neural network
representation in Sec. II and Sec. III, respectively. We then
discuss our approach to local robustness verification and
present our experimental results in Sec. IV. In Sec. V, we
present the dynamics of the closed-loop system; we overview
the reachability method that we use for the verification of the
closed-loop system and present the experimental results on
applying the reachability method on the system. We conclude
our work and discuss future directions in Sec. VL.

Vown Intruder

’

AN R Ownship ,
6 -

Fig. 1. Aircraft encounter geometry for ACAS sXu.

II. ACAS sXU PROTOTYPE

ACAS sXu [1] is a variant of the ACAS X aircraft collision
avoidance family designed to help small unmanned aircraft
avoid near midair collisions (NMACs) with other manned
aircraft or large UAS. Like other ACAS X systems, ACAS
sXu contains logic to compute the encounter state from sensor
information and to issue maneuver advisories when needed
to avoid an NMAC. Advisories are decided using tables of
advisory scores for a discrete set of encounter states that covers
the full range of possible encounter states. These tables are
optimized offline by modeling the problem as a Markov deci-
sion process and solving it with dynamic programming [10].
ACAS sXu uses the encounter state computed from sensor
information to compute the best scoring advisories using
nearest-neighbor interpolation. ACAS sXu contains separate
tables for vertical and horizontal maneuvering, along with
logic for deciding which type of maneuver to issue, but this
work will focus solely on the horizontal table.

The horizontal logic table provides the scores of discrete
state-action pairs, where a state is a seven-dimensional vector,
and an action is one of the horizontal turning advisories. The
seven state variables describe the encounter with an intruder
aircraft (Table I). The first five variables define the horizontal
geometry and are shown in Fig. 1. The 7 variable is a
countdown to the time when vertical separation will be lost, so
the aircraft must be separated horizontally to avoid an NMAC,
which is defined as separation less than 500ft horizontally
when vertical separation is lost. Additionally, including the
previous advisory, S,qy, allows the system to alert consistently.

TABLE 1
ACAS sXU STATE VARIABLES

Variable Description Values Num
p (ft) Range to intruder [499, 36656] 20
0 (rad) Bearing angle to intruder [—m, 7] 41
¥ (rad) Relative heading angle of int. [—7, 7] 41
Vown (ft/s) Ownship speed [100, 472} 6
viny (ft/s) Intruder speed [0, 1200] 12
T (s) Time to loss of vert. separation [0,101] 10
Sadv Previous advisory COC, WL, WR 5
SL, SR

Hidden
Layer 1

Hidden

Layer 2 Output

Fig. 2. An example of a deep neural network.

Each state variable has a range of values that are discretized.
The discretization scheme in Table 1 results in 121 million
possible states.

The action space consists of five turning advisories of
different strengths and directions. The advisories are Clear of
Conflict (COC), Weak Left (WL), Weak Right (WR), Strong
Left (SL), and Strong Right (SR). Weak advisories represent
1.5°/s turns, and strong advisories represent 3.0°/s. COC
allows the ownship to maneuver freely. In total, the table stores
values for every state-action pair, resulting in a table occupying
approximately 2 GB with 32-bit floating point precision.

III. NEURAL NETWORK APPROXIMATION

The size of the horizontal logic table can be too large for use
in certified or small avionics systems with limited memory. A
neural network can be trained to approximate the logic table
and significantly reduce required storage space [2]. Previous
work showed that a neural network representation maintains
accuracy while significantly reducing representation size and
outperforming other compression methods such as decision
trees or symmetry analysis [2], [11].

A feed-forward deep neural network (DNN) consists of a
sequence of layers, including an input layer, an output layer,
and one or more hidden layers in between. A DNN example
is shown in Fig. 2. Each non-input layer contains neurons,
whose values are computed as a weighted sum of the outputs
of the preceding layer plus a bias term. For neurons in the
hidden layers, the weighted sum and bias values are passed
through a non-linear function, known as an activation function.
A common activation function is the Rectified Linear Unit
(ReLU), defined as ReLU (x) = max(0,z) (see [12]-[14]).
In this work, we use ReLU-based DNNs.

TABLE I
INPUT VARIABLES OF ACAS SXU PROTOTYPE NETWORKS

Variable Description Range of values
x (ft) Relative downrange position of intruder [—36656, 36656]
y (ft) Relative crossrange position of intruder [—36656, 36656]
¥ (rad) Relative heading angle of intruder [—m, 7]
vown (ft/s) Ownship speed [100, 472]
Vine (ft/s) Intruder speed [0,1200]

10 -

g 5 -
<
S

= of 1
¢

O —5 .

-0 ! ! ! ! ! L

-5 0 5 10 15 20 25
Downrange (kft)

10 B

g 5 -
<
S

= of 1
¢

C 50 |

-0 ! ! ! ! ! L

-5 0 5 10 15 20 25
Downrange (kft)

Fig. 3. Policy of table (top) and DNN (bottom) representations for a head-on
encounter.

We trained 50 different neural networks, one for each com-
bination of s,4, and 7 € {0, 1, 5, 10, 20, 40, 60, 80, 100, 101 }.
A set of smaller networks was trained rather than a single
large network to reduce runtime to evaluate the networks [2].
For each network, we used the following DNN architecture: 5
inputs, 5 outputs, and 5 hidden layers each containing 30 neu-
rons. The inputs to each network are the five remaining state
variables, but the polar variables p and 6 were converted to
Cartesian coordinates x and y via z = pcosf and y = psin 6.
Using Cartesian coordinates is important when analyzing the
closed-loop system, which is discussed in Section V-B. The
input variables of the 50 neural networks and their expected
range of values is shown in Table II. The outputs of the
networks are estimates of the five advisory scores. Because
the scores are costs, the minimum scoring advisory is the best
advisory.

Each network was trained for 200 epochs with a batch size
of 512 and the Adam gradient descent method [15]. The loss
function was an asymmetric mean squared error designed to
train a network that accurately predicts both the scores of the
advisories and the policy [2]. The trained neural networks
predict the advisory scores with a root mean squared error
of 3.69 (the scores have a range of 424), and the policy
is correct in 94.4% of the states. In total, the 50 network
representation requires 792 kB of memory using 32-bit floating
point precision, which is a 2600x reduction in representation
size.

Fig. 3 shows a slice of the policy produced by the original
table and neural network representations, where the ownship

is at the origin, and each pixel is colored according to the
advisory if the intruder was located at that point and heading
in the direction shown by the aircraft in the upper right corner.
The policy uses nearest neighbor interpolation, but the neural
network is a continuous function. Visually, the neural network
preserves many features of the policy, but there are some
differences. These differences will be explored using neural
network verification tools in the remainder of this paper.

IV. LocAL ROBUSTNESS

When a DNN is employed in a safety-critical context, it
is essential to have confidence that it will not behave in a
way that will make the system unsafe. We can test the DNN
on many different input points and check whether its output
is safe within the context of the system. While this does
increase confidence in the system, it is not sufficient to prove
safety. To further increase the confidence in the system, we
can show that the DNNs are not only safe on a finite set of
test points, but also safe in some neighborhood of those test
points. This property is known as adversarial robustness and
can be checked with a DNN verification tool. Local adversarial
robustness expresses the requirement that the network behave
smoothly, i.e. that small input perturbations should not cause
major spikes in the output. Because DNNs are trained over a
finite set of inputs and outputs, the robustness check captures
our desire to ensure that the network behaves well on inputs
absent from the training and test sets. A definition [8], [16],
[17] of local adversarial robustness is as follows:

Definition 1: A DNN N is §-locally robust at input point
x, iff Vo', ||z — 2’| < § = label(V, z) = label(N, z').

Intuitively, Definition 1 states that for input 2’ that is very
close to x, the network assigns to z’ the same label that it
assigns to x; local thus refers to a local neighborhood around
the point x. Larger values of ¢ imply larger neighborhoods, and
hence better robustness. In the context of image recognition,
for example, 6-local-robustness can capture the fact that slight
perturbations of the input image should not result in a change
of label.

By using a sufficiently fine grid of test points in the input
domain and showing local robustness in a region at least as
large as the distance between test points, we could increase
our confidence that the network is likely to behave as intended.
A natural representative set of test points is the training set
because these points are considered ground truth and cover the
input region where the network is expected to perform well.
However, there are two difficulties with this approach:

1) Computational cost: Since the training data for each
network contains more than 810,000 points, it could be
computationally expensive to check all points for all
networks individually;

2) Decision boundaries: For points near the decision bound-
ary (i.e., the hypersurface that partitions the input space
into sets corresponding to different output labels), we
should not expect the local adversarial robustness to hold.
Therefore, the parts of the input regions that are near
decision boundaries should be handled differently.

l

Input region

Fig. 4. Step 1 of the hypercube approach.

We propose a technique that allows us to check multiple
points simultaneously. The training data R (a set of points)
is partitioned into disjoint subsets such that each subset S;
contains geometrically contiguous points with the same output
label. Instead of individually checking robustness around each
point in R, our idea is to check points simultaneously in .S;.
More precisely, for each S;, we check robustness in a region
H containing only points in .S;.

Since DNN verification tools typically require that local
adversarial robustness queries are given over a convex affine
input region, it is important that H be symbolically represented
as a convex affine set. In this work, we fix the shape of H to
be a hypercube defined by lower- and upper-bounds of each
input variable.

Definition 2: A DNN N is locally robust in hypercube H,

iff Vo € H = label(NV, z) = label(H).
Here, we abuse notation and denote label(H) as the label of
the test points in H. Note that if adversarial examples are
found in H, then by Definition 2, N is not locally robust
in H. However, this result can lead to a lower estimate
of the network’s overall local robustness. To improve this
situation, we identify subsets of H where the neural network
is adversarially robust, allowing us to better estimate the
accumulated local robustness.

To address the second challenge, we exclude the decision-
boundary regions from each hypercube symbolic representa-
tion as discussed in the rest of this section.

A. A Hypercube Approach

We describe our approach, which is broken down into three
steps, to establish the adversarial robustness of the trained
networks.

Step 1: Decompose the training points into clusters of adja-
cent points with the same output label (Figure 4 is an
illustration of this step in 2 dimensions);

Step 2: Decompose the points in the same cluster into sets of
points such that they can be symbolically represented by
a hypercube, as illustrated by Figure 5;

Step 3: Compute the volume of adversarially robust regions in
each hypercube.

In Step 2, we use a greedy algorithm described in Algo-
rithm 1 to decompose a cluster into sets of points. Given a
cluster of points C, we iterate through each point p in C' and
check to see if it can be included in some existing set. The
function extend(he, p) returns the set of training points in the
minimal hypercube that contains hc U {p}. A point can be

—> T

Fig. 5. Step 2 of the hypercube approach.

[| rr—rTi

- g e

L | |

I .

Fig. 6. Input regions excluded by the hypercube analysis.

included in a set he, if extend(hc, p) does not include points
outside C'. If no existing set can be extended, then we augment
he with a new set {p}.

We symbolically represent each set of points with a minimal
hypercube containing that set (regions bounded by the dotted
lines in Fig. 5). This way of generating hypercubes effectively
leaves out decision boundaries. However, this also leaves out
some regions that are not expected to be decision boundaries
(e.g., the shaded areas in Fig. 6). We can do a second
analysis pass to identify those left-out regions and add them
to appropriate hypercubes. However, in this work, we do not
perform this second pass and leave it as future work. Using the
hypercube clusters, we can check the adversarial robustness of
a network in each hypercube instead of checking single points
individually. This reduces the number of solver calls.

Note that in Step 3, we do not just check whether a hy-
percube H contains adversarial examples, because adversarial
examples may only exist in small subsets of H, and concluding
that H as a whole is not adversarially robust in such cases
would be misleading. Therefore, in such cases, we attempt
to identify hypercubes contained in H that are adversarially
robust. We compute the ratio of their volume to the volume of
H, a metric that we call robust volume ratio. If no adversarial
examples exist in [, the robust volume ratio of H is 100%.
With this metric, we obtain a better estimate of how robust

Algorithm 1 Decomposing a cluster of points

Input: A cluster of points C'
Output: Sets of points hcs
he <0
while C. notEmpty ()
p < C.pop()
for hc € hces
he « extend(hc, p)
if hd C C
he,C + he', (C\ he')
break
hes < hes U {{p}}
return hcs

the network is in H.

B. Computing Robust Volume Ratio

Algorithm 2 shows how we compute the robust volume
ratio of the hypercube H. We now describe the algorithm in
detail. The set of hypercubes whose adversarial robustness to
be checked is represented by (), which is initialized with {H}.
The set A contains hypercubes that are not adversarially robust
and is empty in the beginning. Then, while () is not empty, we
pop a hypercube h from () and check its adversarial robustness
(this is done using the checkRobustness method). If & is
robust, we continue to check other hypercubes in (). Other-
wise, we partition h into K disjoint hypercubes and add them
to Q. Note that if the volume of h is below a certain predefined
threshold — captured by the volumeThresholdReached
method — then we add it to the set of unrobust hypercubes A.
The algorithm terminates when () becomes empty. We could
then compute the total volume vy of A, and subtract it from
the volume of vy to obtain the volume of robust regions in
vyH.

In Algorithm 3, we present the checkRobustness
method, which returns true if the given network N is robust
in the hypercube H and returns false otherwise. The main part
of the algorithm checks whether it is possible to have a misla-
beled output. By a mislabeled output, we mean that an output
variable, corresponding to a label other than the expected label
l, is given a lower score than the score corresponding to [.
This check is done using the checkSat method, which takes
as input the network N and a query ¢. The checkSat method
invokes a DNN verification tool and returns SAT if it finds an
assignment to the inputs of N that makes ¢ true; otherwise,
it returns UNSAT. A SAT result means that there exists a
counterexample, so in that case checkRobustness returns
false. If for all the labels other than [, the result of checkSat
is UNSAT, then checkRobustness returns true.

C. Cartesian Approximations of Polar Coordinate Rectangles

The first two inputs to the neural networks represent the
relative position of the intruder with respect to the ownship and

Algorithm 2 Compute Robust Volume Ratio

Input: A neural network N, a hypercube H
Output: the robust volume ratio of H, r
Q « {H}
A+
while Q. notEmpty|()
h + Q. dequeue()
tsRobust < checkRobustness(N, h)
if —isRobust
if volumeThresholdReached(h)
A. enqueue(h)
else
for b’ € partition(h, K)
Q.enqueue(h’)
v = volume(H)
vA =), volume(h)
return (vyg —va)/ve

are given in rectangular coordinates. However, the hypercubes
are created using the original lookup table with polar coordi-
nates. We approximate the area defined by the first two inputs
(in polar coordinates) using linear constraints in rectangular
coordinates.

A rectangle in polar coordinates is defined as: i) pmin <
P < Pmax,> 1) Omin < 0 < Onax. This is the region defined by
the black lines in Figure 7. We can approximate this region
using four linear bounds in Cartesian (rectangular) coordinates
(z,y), where © = pcosf and y = psinf. We state without
proof the symbolic representation of the linear approximation
in rectangular coordinates (the region defined by the dashed
lines in Figure 7).

The upper and lower bounds on € are converted to linear
inequalities in Cartesian coordinates using £ > tan(0nin) and
¥ < tan(fmax), Which is an exact representation of the 6
bounds. Representing bounds on p requires non-linear bounds
in Cartesian coordinates, so linear approximations are used,
as depicted in Fig. 7. An inner approximation is used so that
any counterexample found within the linear region will be a
valid counterexample. The upper bound on p is approximated
by connecting the endpoints of the bounding arc, and the
lower bound on p is approximated using a tangent line at the
midpoint of the arc. Defining 6 = %(amin+9max)s the equations
for these boundary lines are

1
Yy=—- —(33 — Pmax COS(emin)) + Pmax Sin(emin) (1
tan @
1 _ _
Yy = ———=(& — Pmin c08(6)) + Pmin sin(0), (2)
tan @

and the direction of the bounds can be determined by using
the test point (0,0). For Eq. 1, the linear approximation of
the pmax bound, (0,0) should always be a point that satisfies
the constraint. For Eq. 2, the linear approximation of the ppi,
bound, (0,0) is a point that should not satisfy the constraint.

D. Experiments

We performed the analysis on the ACAS sXu prototype
networks to establish their adversarial robustness. We excluded
from our analysis the networks which correspond to 7 = 101
(5 out of 50 networks), because their training data gives a
uniform advisory of COC and those networks can be replaced
with a constant. As a proof of concept, for the remaining 45
networks, we randomly sampled about 1% of the hypercubes
and computed their robust volume ratio. We ran our main
experiment on a cluster equipped with Intel Xeon E5-2620
v4 CPUs running Ubuntu 16.04.

Algorithm 3 checkRobustness

Input: A neural network N, a hypercube H
Output: true if no adversarial examples were found in H, false
otherwise.
l « label(H)
for I’ € AllLabels

if I’ # 1 & checkSat(N, H A (yy < y;)) = SAT

return false

return frue

T T T
Rectangle in polar coordinates
4 H
= = = Linear approx. in Cartesian coordinates
3 | - .
>

2 | - .
1 l— —
0 ! ! ! !

0 1 2 3 4

Fig. 7. Cartesian linear approximation of polar coordinates.

Implementation details: We adapted Marabou[6], a state-
of-the-art DNN verification tool, to compute the robust volume
ratio of a hypercube. We also used its parallelization capabil-
ities to improve the solving time [18].

When computing the robust volume ratio, we kept parti-
tioning an unrobust hypercube until the range along each of
its dimensions was 5% of the full range of that dimension
(as defined by the training data). Hypercube partitions were
created by bisecting the widest intervals of the hypercube.
The K parameter (the number of partitions to be created) in
Algorithm 3 was set to be 4.

Results: For each network, Step 1 and Step 2 finished
within 12 hours. The rows in Table III show the maximum,
minimum, median and mean numbers of clusters and hyper-
cubes. The training set for each network contains more than
810,000 data points; thus, our hypercube approach reduced the
number of solver calls by an order of magnitude.

We randomly sampled a total of 36375 hypercubes. For
each of these hypercubes, we computed the robust volume
ratio. Running Marabou with 4 threads and a time limit of
20 minutes (wall clock time) was sufficient for most (36277)
of the hypercubes. The median (mean) solving time for these
queries was 3 seconds (14 seconds). Another 95 hypercubes
required Marabou with 8 threads and a 2 hour (wall clock time)
time limit. The last 3 hypercubes finished within 45 minutes
using Marabou with 96 threads. The last set of hypercubes
jobs were run on a cluster equipped with Intel Xeon E5-2699
v4 CPUs running CentOS 7.7.

The median robust percentage of the 45 tested networks
is 99.66%, and the mean is 97.68%. 41 out of the 45 tested

TABLE III
STATISTICS OF CLUSTERS AND HYPERCUBES

Max Min Median Mean
Clusters 7252 196 4971 5067
Hypercubes 87631 2445 70834 75801

0
=
&
==
=
]
en
=1
<
7
s —20 |-
<]
=
o

= = = Hypercube
Unrobust reg.

—10 0 10 20 30 40
Downrange (kft)

Fig. 8. Unrobust regions found for a COC region with 7 = 40's & s,qy = SL.

networks have a robust percentage greater than 95%. For the
remaining 4 networks, 3 have a robust percentage above 80%,
while one has a robustness percentage of 67.03%.

Figure 8 shows one of the largest hypercubes created by
the clustering algorithm. There are a few small regions where
the expected advisory, COC, is not given, and our approach
refines the large hypercube into smaller search regions in order
to pinpoint all unrobust regions of the original hypercube.

Our robustness verification of the sampled hypercubes sug-
gests that the trained networks in general have high local
adversarial robustness. However, adversarial examples can be
found for each network, and one of the 45 networks has
relatively low robustness percentage. Therefore, robustness
verification alone cannot guarantee full runtime safety of
the networks. In the next section, we present an alternative
approach that establishes confidence in the networks despite
this.

V. CLOSED-LOOP VERIFICATION OF ACAS sXU

This section describes the dynamics of the ACAS sXu
closed-loop system and then gives an overview of the
reachability-based verification method. The dynamics and the
reachability method are explained in detail in earlier work [7].
Later in the section, we present the verification results of our
experiments.

To analyze the closed-loop system, a dynamical model must
be assumed, which specifies how the state variables of the
system change in response to the neural network advisories.
The dynamics are a function of the ownship and intruder turn
rates Uown and uiy respectively, and the advisory specifies the

TABLE IV
TURN RATE MODEL FOR CLOSED-LOOP SYSTEM

Aircraft Advisory umin (°/s) umax (°/S)
Ownship COC -0 é
Ownship WL 1.5—-9 1546
Ownship WR —15-94§ —-1.546
Ownship SR 3.5—-46 35+0
Ownship SL —-35—-46 —3.546
Intruder N/A = 0

limits on these turn rates, as shown in Table IV. The § term,
assumed to be non-negative, is used to relax these limits, which
allows us to show how the results of reachability analysis
change for different dynamical models. This turn rate model
is independent of how the horizontal table was formulated,
and assuming a bounded range of turn rates rather than a
distribution is needed for the reachability analysis.

The state variables are updated using the turn rate variables.
If the state variables were represented using polar coordinates,
the update equations would require functions like arctan and
norm, which are difficult to handle with the reachability analy-
sis and can lead to large approximation errors. These functions
can be avoided by using Cartesian coordinates instead. The
state variables are always defined with respect to the ownship’s
heading direction, which means that the ownship turn rate s
will affect the updated intruder position as well as relative
intruder heading angle, 1.

Both aircraft are assumed to maintain constant turn rates
Uown and wuiy, respectively, for one second, which is the
time between advisories. The position of the two aircraft
after maneuvering as defined in the original coordinate frame
centered at the ownship’s original position is:

;o Sin(town)

= Vown—— €))
own Yo

1 — cos(town)

X

/

= Uown 4
yown Vo Uown ()
T = @+ 1y AL tim) — S 5)

Uint

coSs — cos(VW + u;

Yint = Y + Vint @) ” W m)~ (6)

nt

Once the new positions of the two aircraft are computed in
the original coordinate frame, the new state variables can be
computed as the position of the intruder aircraft relative to the
ownship’s new position and heading direction using:

z [(Za = Town) €OS(tUown) + (Yine — Yown) ST (Uown) |
y (Yine = Yown) €08 (Uown) — (Tio — Town) S (Uown)
(0 P + Uint — Uown
UOW“ % UOW“
Vint Vint
T max(0,7 — 1)
sadv L S;dv i
(7

As mentioned earlier, we have 50 different neural net-
works, one for each combination of s, and 7 €
{0,1, 5,10, 20, 40, 60, 80, 100, 101}. For the reachability anal-
ysis, each neural network has only three inputs, p, 8, and v, be-
cause the speed dimensions are assumed to be constant. When
the neural networks are used, the 7 value is rounded down to
the closest value in 7 € {0, 1,5, 10, 20, 40, 60, 80, 100, 101}
and used with s,qy to determine the network to be evaluated.

This model assumes a constant speed for both ownship and
intruder aircraft, though future work could incorporate speed
changes into the model. The results generated in this section
assume vown = 186 ft/s and vip, = 142 ft/s, which are discrete

values used in the table. The same approach could be applied
to different speed combinations to produce additional results.

A. Reachability Analysis

We now give a high-level overview of the reachability
method proposed by [7]. The method uses open-source DNN
verification tools with the system dynamics to determine
which regions of the state space can be reached over time.
DNN verification tools like Marabou [6] and Reluval [9] can
determine whether an advisory is given at any point within
a region of the input space. By splitting the input region
into small cells and computing which advisories can be given
within each cell, the method computes an over-approximation
of the neural network system.

The analysis begins by partitioning the entire state space
into a set C of cells and initializing a set of reachable cells,
Ro, which is the set of states that could occur before the
neural network takes action. For collision avoidance networks,
this would include all cells where either vertical or horizontal
separation is at maximum sensing range. Then, for each ¢, we
compute R,y as follows. For each ¢ in R;, we compute A,
the set of all possible advisories that the system can produce
from points within c. The system dynamics are then used to
compute R, ,, the cells within C that could be reached at the
next time step from some state within ¢ € R; given advisory
a € A.. If the system dynamics are nonlinear, then R, , is an
over-approximation of the next states reachable from c. Then,
Ri41 is computed as the union of all cells that intersect with
R. o Ve € Re, a € A.. This process is repeated until either
an NMAC cell is added to the reachable set or R converges
to a steady state with no NMAC cells.

The reachability analysis is summarized in Algorithm 4.
Because of the over-approximation, if the reachability analysis
concludes that the system cannot reach an unsafe state, then
the real neural network system is guaranteed to maintain
safety.

In general, the method may not converge to a steady-
state set. In that case, the method should be repeated with a
finer approximation of the system. This could be done either
by using a finer grid or by refining over-approximations of
nonlinear dynamics.

Algorithm 4 Reachability analysis [7] for collision avoidance
neural networks
Input: Ro, C
t=0
while isSafe(c) Ve € Ry and (¢ = 0 or Ry # Re—1)
t=t+1
R 0
for cc Ri—1
Compute A, using neural network verification tool
for a € A,
Compute R. , using state dynamics
Rt < Rt U {Rcya ﬂ C}
if isSafe(c) Ve € Ry
return Safe
return Unsafe

Time to coaltitude: 100 s Time to coaltitude: 40 s Time to coaltitude: 20 s
10 T T T 10 T T T 10 T T T 360
300 3
- . - - - 2
g ° b b 240 §
=< =
= g
o 180 g
£ o @ s o : ol <
z 120 o
2 2
© 5 S S 60 £
z
1
_10 | | | 10 | | | 10 | | | EJo
-5 0 5 10 15 -5 0 5 10 15 -5 0 5 10 15
Downrange (kft) Downrange (kft) Downrange (kft)
Time to coaltitude: 10 s Time to coaltitude: 5 s Reached coaltitude
300 3
Q
g > 240 §
P E
o 180 §
§ 0 %
2 120
g £
© 5 CU
z.
1
_10 ! ! ! _10 ! ! ! 10 ! ! ! E o
—5 0 5 10 15 -5 0 5 10 15 —5 0 5 10 15
Downrange (kft) Downrange (kft) Downrange (kft)
Fig. 9. Fine Grid — Reachable set for the networks over time.
B. Experimental Evaluation Reached coaltitude
. . . 10
The reachability method requires defining the search space ‘ ‘ ‘ =
grid, including the size of the grid and the granularity of the 1
. . . o
cells in the grid. We performed two experiments on the ACAS 51 S
sXu closed-loop system, based on the cell granularity: first El
. (3]
with a coarse grid, and later with a fine grid. For the grid size, = -
. =]
we took the entire range of the input variables from the training 5
data. We imposed a 16GB memory limit for the experiments. 58 'g
Implementation Details: We adapted the reachability “
code developed previously [7]. The code required that the 10 ‘ ‘ ‘
inputs be given in rectangular coordinates. Rectangular coor- Ty 0 5 10

dinates improve the reachability analysis. For the underlying
DNN verification tool, we used ReluVal because of its use of
symbolic bound propagation [9], which makes it especially fast
for small regions of input space. For the dynamical model, we
used § = 0°/s, which assumes that the intruder does not turn,
and that the ownship turns at precise turn rates. An intruder
could appear far away horizontally or vertically, so the initial
set is all states when 7 = 100s, and cells that are at the
maximum horizontal range are always added to the reachable
set as 7 counts down towards 0s, when vertical separation is
lost.

Results using a Coarse Grid: For the coarse grid, the
cells were discretized in x (downrange — 136 units) and y
(crossrange — 140 units) more densely near the NMAC region

Downrange (kft)

Fig. 10. Reachable set at 7 = O's using the original table.

and areas leading to that region. In addition, v was discretized
to 360 one-degree segments. The final discretization had 6.86
million cells. We ran Reluval on each network in parallel on
a cluster. On average, each job required about 3 hours. The
result of reachability analysis was not conclusive because of
the over-approximation in the computation of the reachable
set. This was expected due to the use of a coarse grid.
Results using a Fine Grid: We refined the coarse grid
by more finely discretizing the cells in x (334 units) and y

(288 units). Similar to the coarse grid, we discretized more
finely near the NMAC region and areas leading to that region.
The discretization of ¢ was unchanged. This resulted in 34.6
million cells in total. It required about 4 hours (on average)
to run the Reluval job for each network. This time, we were
able to show that no NMAC cells are reachable. Fig. 9 shows
snapshots of the reachable cells at different 7 values. The color
of the cell in the plots indicates the number of cells reachable
for that (z,y) location, i.e. the number of intruder heading
angles reachable at that location. Yellow indicates more cells
are reachable while blue shows fewer cells are reachable, and
white means no cells are reachable. The red dot at the origin
represents the NMAC region. Initially, all cells are added to the
reachable set at 7 = 100s, but over time the neural network
collision avoidance system removes unreachable cells around
the NMAC region. Because the NMAC region is completely
inside the white unreachable region when 7 = 0's, no NMACs
are possible. The reachability method proves separation of
1000 ft, which is the minimum distance the intruder aircraft
could be horizontally when the vertical separation between the
ownship and the intruder is lost.

Comparison to Table Policy: The original ACAS sXu
table used to train the neural networks can also be evaluated
with the reachability analysis. Instead of using ReluVal to de-
termine which advisories can be given within a cell, advisories
are determined by the table values with a nearest-neighbor
approximation. The rest of the reachability analysis follows
the same procedure as with the neural networks.

Using the fine discretization, with 6 = 0°/s, the reachability
analysis could guarantee horizontal separation of only 781 ft
using the table, which is smaller than that of the neural
network representation. Fig. 10 shows the reachable set once
vertical separation is lost. This result suggests that the neural
network representation does not degrade safety.

Results using Larger § Values: The previous results use
d = 0°/s which is restrictive and not representative of real-
world systems with errors. Increasing delta expands the turn
rate limits, which gives the aircraft more maneuverability
but degrades the safety guarantees. For 6 = 0.1°/s, the
reachability analysis proves that the neural network will have
818.9ft of horizontal separation, while the table shows only
410ft, which is less than the required 500ft to avoid an
NMAC. If ¢ is increased to 0.2 °/s, the horizontal separations
at 7 = Os are 475 ft and 279.5 ft for the neural network and the
table, respectively. Therefore, neither the neural network nor
table representations could be proven safe with 6 = 0.2°/s.
Howeyver, this result does not mean that the table or neural
network systems are unsafe because the reachable NMACs
could be caused by over-approximation errors.

Results with Horizontal Separation Initial Set: The reach-
ability analysis experiments described above model intruders
that begin far away horizontally or vertically. The same
reachability analysis can be used with different initial sets
to study different types of situations. For example, coaltitude
encounters can be simulated by setting the inital set to include
all cells at the maximum horizontal separation when vertical

separation is already lost (7 = 0s). This initial set is depicted
in the left plot of Fig. 11.

The reachability analysis was repeated for both the neural
network and table representations using the coaltitude initial
set. The results with 6 = 0.0 are depicted in Fig. 11, which
show that both the neural network and table collision avoid-
ance systems are able to maintain over 2500 ft of horizontal
separation from the intruder aircraft. Table V aggregates the
results of reachability analysis for both the neural network and
table representations. Safety margins decrease as J increases,
and the neural network results have larger safety margins than
those of the table for all § > 0. Using the coaltitude initial
set allowed safety to be proven for larger § values, suggesting
that an intruder beginning above or below the ownship can
cause problems for the reachability method. This could be
addressed by reducing over-approximation errors by using a
more finer grid. Overall, this reachability analysis shows that
the prototype neural network ACAS sXu can be proven safe
for a variety of dynamical models, and the neural network
representation can be proven safe whenever the original table
can be proven safe.

VI. CONCLUSION

We have presented a methodology for formally verifying a
DNN-based collision avoidance system for small unmanned
aircraft. Hypercube clustering can be used to verify local
robustness of the trained networks. This approach allows us
to check multiple single-point local robustness queries as one
query. The results of local robustness show that the neural
networks are not locally robust everywhere. However, by using
a reachability method proposed in earlier work, we have
shown that the closed-loop system with the neural network
cannot reach an unsafe state. In the reachability analysis,
we have assumed that the velocities of the ownship and the
intruder are constant. Moreover, the analysis is based on over-
approximating nonlinear dynamics of the closed-loop system
and discretizing the input search space. Using a coarse search
grid, we could not prove safety with the reachability method.
As a consequence, we used a finer grid in the reachability
analysis, and that has allowed us to prove safety of the closed-
loop system.

This work can be extended in several directions. For local
robustness, improving the clustering algorithm with polytopes
would be an interesting future direction to explore. For the
reachability analysis, relaxing the assumption about velocities

TABLE V
REACHABILITY ANALYSIS RESULTS WITH COALTITUDE INITIAL SET

6 (°/s) Min Table Separation (ft) ~ Min Network Separation (ft)
0.0 2756.1 2600.5
0.1 1788.9 2545.3
0.2 1777.8 2438.2
0.3 540.8 992.5
0.4 485.4 922.0
0.5 459.6 820.1

Crossrange (kft)

Initial set at coaltitude

Converged set for table

Converged set for neural network

10 T T T

360
300
240
180

120

Number of reachable cells

10 ‘ \ T 10 T T T
51]
0 ® f
_5|]

—10 . ‘ ‘ ~10 \ | !

—5 0 5 10 15 -5 0 5 10

Downrange (kft)

Fig. 11.

of the ownship and the intruder would be important. Another
interesting direction would be automating the refinement of
the over-approximation in the reachability method.

ACKNOWLEDGMENTS

This work was supported in part by the Stanford Center
for AI Safety, as well as by the National Science Foundation
under Graduate Research Fellowship DGE-1656518 and under
grant number 1814369.

(1]

(2]

(3]

(4]

(5]

(6]

(71

REFERENCES

L. E. Alvarez, 1. Jessen, M. P. Owen, J. Silbermann, and P.
Wood, “ACAS sXu: Robust decentralized detect and avoid for
small unmanned aircraft systems,” in Digital Avionics Systems
Conference (DASC), 2019, pp. 1-9.

K. D. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep neu-
ral network compression for aircraft collision avoidance sys-
tems,” Journal of Guidance, Control, and Dynamics, vol. 42,
no. 3, pp. 598-608, 2019.

J. G. Lopez, L. Ren, B. Meng, R. Fisher, J. Markham, M.
Figard, R. Evans, R. Spoelhof, M. Rubenstahl, and S. Edwards,
“Integration and flight test of small UAS detect and avoid on
a miniaturized avionics platform,” in Digital Avionics Systems
Conference (DASC), 2019.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan,
I. J. Goodfellow, and R. Fergus, “Intriguing properties of
neural networks,” in International Conference on Learning
Representations (ICLR), 2014.

A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial
examples in the physical world,” in International Conference
on Learning Representations (ICLR), 2017.

G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus,
R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljic, D. L. Dill,
M. J. Kochenderfer, and C. W. Barrett, “The Marabou frame-
work for verification and analysis of deep neural networks,”
in International Conference on Computer-Aided Verification,
2019, pp. 443-452.

K. D. Julian and M. J. Kochenderfer, “Guaranteeing safety for
neural network-based aircraft collision avoidance systems,” in
Digital Avionics Systems Conference (DASC), 2019, pp. 1-10.

Downrange (kft)

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

—10 | | |
—5 0 5 10

Downrange (kft)

Reachable sets using an initial set with maximum horizontal separation.

G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochen-
derfer, “Reluplex: An efficient SMT solver for verifying deep
neural networks,” in International Conference on Computer-

Aided Verification, 2017, pp. 97-117.
S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Effi-

cient formal safety analysis of neural networks,” in Advances
in Neural Information Processing Systems (NeurlPS), 2018,
pp. 6369-6379.

K. A. Smith, A. E. Vela, M. J. Kochenderfer, and W. A.
Olson, “Optimizing a collision-avoidance system for closely
spaced parallel operations,” Journal of Aerospace Information
Systems, vol. 12, no. 10, pp. 618-633, 2015.

K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and
M. J. Kochenderfer, “Policy compression for aircraft collision
avoidance systems,” in Digital Avionics Systems Conference
(DASC), 2016, pp. 1-10.

V. Nair and G. E. Hinton, “Rectified linear units improve
restricted Boltzmann machines,” in International Conference
on Machine Learning (ICML), 2010, pp. 807-814.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” Com-
munications of the ACM, vol. 60, no. 6, pp. 84-90, 2017.
A.L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlineari-
ties improve neural network acoustic models,” in International
Conference on Machine Learning (ICML), vol. 30, 2013, p. 3.
D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning Rep-
resentations (ICLR), 2015.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety
verification of deep neural networks,” in International Con-
ference on Computer-Aided Verification, ser. Lecture Notes in
Computer Science, vol. 10426, Springer, 2017, pp. 3-29.

O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. V.
Nori, and A. Criminisi, “Measuring neural net robustness with
constraints,” in Advances in Neural Information Processing
Systems (NIPS), 2016, pp. 2613-2621.

H. Wu, A. Ozdemir, A. Zelji¢, K. Julian, A. Irfan, D. Gopinath,
S. Fouladi, G. Katz, C. Pasareanu, and C. Barrett, “Paral-
lelization techniques for verifying neural networks,” in Formal
Methods in Computer Aided Design (FMCAD), 2020.

